С какой целью в современных двигателях используют по четыре клапана на каждый цилиндр вместо двух
Перейти к содержимому

С какой целью в современных двигателях используют по четыре клапана на каждый цилиндр вместо двух

  • автор:

Как работает двигатель внутреннего сгорания

Открывая крышку капота, Вы когда-нибудь задумывались о том, как работает двигатель? Для непосвященного человека двигатель выглядит как кусок металла с трубками и проводами. Возможно, Вам просто из любопытства интересно узнать, как же работает двигатель. Или, может быть, Вы собираетесь купить новый автомобиль и слышите фразы «3.0 л V-6», «двухраспредвальный вид головки» или «отрегулированный тракт впрыска топлива». Что все это такое?

В данной статье мы расскажем об устройстве двигателя, его компонентах, о том, как они работают вместе, какие могут возникнуть неполадки и как увеличить производительность.

Содержание статьи

  1. Введение
  2. Внутреннее сгорание
  3. Устройство двигателя
  4. Неполадки двигателя
  5. Клапанный механизм и система зажигания двигателя
  6. Системы охлаждения, воздухозабора и запуска двигателя
  7. Читайте также » Системы смазки, подачи топлива, выхлопа и электросистема двигателя
  8. Увеличение мощности двигателя
  9. Часто задаваемые вопросы по двигателям
  10. Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
  11. Узнать больше
  12. Читайте также Статьи про все типы двигателей

Бензиновый автомобильный двигатель предназначен для преобразования энергии бензинового топлива для движения автомобиля. В настоящий момент самым простым способом привести автомобиль в движение является сгорание бензина в двигателе. В связи с тем, что двигатель автомобиля является двигателем внутреннего сгорания, сгорание топлива происходит внутри двигателя.

  • Существуют различные типы двигателей внутреннего сгорания. Каждый из них имеет свои преимущества и недостатки.
  • Также существуют и двигатели внешнего сгорания. Паровые двигатели в поездах старого образца и пароходах являются наглядным примером двигателей внешнего сгорания. В паровых двигателях топливо (уголь, дрова, масло и т.д.) сгорает вне двигателя для получения пара, который уже приводит двигатель в движение. Внутреннее сгорание является более эффективным (расход топлива на 1км значительно ниже) чем внешнее сгорание, помимо этого размеры двигателей внутреннего сгорания намного меньше двигателей внешнего сгорания. Именно поэтому нам не встречаются автомобили Ford или GM на паровых двигателях.

Принцип работы любого поршневого двигателя внутреннего сгорания: Если поместить небольшой объем высокоэнергетического топлива (например, бензина) в небольшой закрытый сосуд и воспламенить, то в результате высвободится огромное количество энергии в виде расширяющегося газа. Этой энергии хватит для запуска картофелины на 1510м. В данном случае энергия используется для движения картофелины. Данную энергию можно использовать в более интересных целях. Например, если у Вас получится создать цикл, который позволит производить взрывы с частотой несколько сотен раз в минуту, и если Вам удастся эффективно использовать данную энергию, то Вы получите основную часть автомобильного двигателя!

Рисунок 1

На сегодняшний день практически во всех автомобилях используется так называемый четырехтактный цикл сгорания для преобразования энергии топлива в механическую энергию. Четырехтактный принцип работы также называют Цикл Отто, в честь Николауса Отто, который изобрел его в 1867г. Все четыре такта представлены на рисунке 1. Эти такты:

  • Такт впуска
  • Такт сжатия
  • Рабочий такт
  • Такт выпуска
  1. Поршень начинает движение сверху, впускной клапан открывается, поршень движется вниз для наполнения цилиндра воздухом и бензином. Это такт впуска. На данном этапе для смеси топлива и воздуха требуется лишь небольшое количество бензина. (Часть 1 рисунка)
  2. Затем поршень движется вверх, сжимая топливно-воздушную смесь. Сжатие способствует более мощному взрыву. (Часть 2 рисунка)
  3. Как только поршень достигает верхней точки, срабатывает свеча зажигания, которая воспламеняет топливо. Происходит взрыв бензина, при этом поршень движется вниз. (Часть 3 рисунка)
  4. Как только поршень достигает нижней точки хода, открывается выпускной клапан для вывода продуктов сгорания по выхлопной трубе. (Часть 4 рисунка)

В следующем разделе мы предлагаем рассмотреть детали, которые обеспечивают работу двигателя, начиная с цилиндров.

Устройство двигателя

Цилиндр является самой важной частью двигателя, поршень совершает поступательные движения в цилиндре. Вышеописанный двигатель имеет один цилиндр. Такой двигатель типичен для газонокосилок, однако в автомобильные двигатели имеют более одного цилиндра (обычно четыре, шесть или восемь). В многоцилиндровых двигателях цилиндры расположены в одном из трех порядков: линейно, V-образно или оппозитно (т.н. двигатель с горизонтальными противолежащими цилиндрами или оппозитный двигатель).

Рисунок 2. Линейное расположение — Цилиндры расположены линейно в один ряд.

Рисунок 3. V-образное — Цилиндры расположены линейно в два ряда под углом друг к другу.

Рисунок 4. Оппозитное — Цилиндры расположены линейно в два ряда с противоположных сторон двигателя.

Говоря об управляемости, затратах на производство и характеристиках формы, необходимо отметить, что различные конфигурации имеют свои преимущества и недостатки. Благодаря этим преимуществам и недостаткам определенные типы двигателей подходят для определенных автомобилей.

Давайте более подробно рассмотрим основные детали двигателя.

Свеча зажигания
Свеча зажигания подает искру для воспламенения топливно-воздушной смеси, что обеспечивает процесс сгорания. Для правильной работы двигателя искра должна подаваться в строго определенный момент.

Клапаны
Впускной и выпускной клапаны открываются в определенный момент для впуска топлива и воздуха и выпуска выхлопа. Обратите внимание, что оба клапана закрыты во время тактов сжатия и сгорания для обеспечения герметичности камеры сгорания.

Поршень
Поршень — это металлическая деталь цилиндрической формы, которая движется вверх и вниз внутри цилиндра.

Поршневые кольца
Поршневые кольца обеспечивают скользящее уплотнение между внешней кромкой поршня и внутренней кромкой цилиндра. Кольца используются для двух целей:

  • Они препятствуют попаданию топливно-воздушной смеси в картер из камеры сгорания в процессе такта сжатия и рабочего такта.
  • Они препятствуют попаданию масла из картера в камеру сгорания, где оно может сгореть.

Шатун
Шатун соединяет поршень и коленвал. Он может вращаться с обеих сторон для изменения угла во время движения поршня и вращения коленвала.

Коленвал
Коленвал преобразует поступательное движение поршней во вращательное как рычаг «чертика из табакерки».

Картер
Картер окружает коленвал. В нем находится некоторое количество масла, которое собирается в нижней части картера (поддоне картера).

Далее мы узнаем о неполадках двигателя.

Неполадки двигателя

Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится. Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:

Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:

  • У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
  • У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
  • Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
  • Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.
  • Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
  • Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
  • В цилиндре имеются повреждения.

Регулярное техническое обслуживание может помочь избежать ремонта

Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:

  • При износе свечи зажигания или ее провода может наблюдаться слабая искра.
  • При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
  • Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.
  • Если аккумулятор разряжен, Вы также не сможете завести двигатель.
  • Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
  • Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
  • Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
  • Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
  • В исправно работающем двигателе все эти факторы находятся в допустимых пределах.

Клапанный механизм и система зажигания двигателя

Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.

Клапанный механизм состоит из клапанов и механизма, который открывает и закрывает их. Открывающая и закрывающая система называется распредвал. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз ,как показано на Рисунке 5.

Рисунок 5. Распредвал

В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана. Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название «двухраспредвальный вид головки». Для получения более подробной информации читайте статью «Как работает распредвал».

Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью «Как работает автомобильная система зажигания».

Рисунок 6. Система зажигания

В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.

Системы охлаждения, воздухозабора и запуска двигателя

В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».

На схеме представлено соединение патрубков системы охлаждения

Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.

Для получения более подробной информации читайте статью «Как работает турбокомпрессор».

Увеличение мощности двигателя — это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:

  • Любое собственное трение, вызванное поршневыми кольцами
  • Давление сжатия любого из цилиндров во время такта сжатия
  • Энергию, необходимую для открытия и закрытия клапанов распредвалом
  • А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.

В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).

Системы смазки, подачи топлива, выхлопа и электросистема двигателя

Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.

  • При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
  • В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).

Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.

Выхлопная система автомобиля Porsche 911

Теперь, когда Вы уже кое-что знаете о том, что заливается в автомобиль, давайте рассмотрим, что же из него выходит. Выхлопная система состоит из выхлопной трубы и глушителя. Если глушитель не установлен, то Вы сможете услышать звуки тысяч небольших взрывов, доносящихся из выхлопной трубы. Глушитель заглушает эти звуки. Выхлопная система также включает в себя и каталитический дожигатель выхлопных газов. Для получения более подробной информации читайте статью «Как работает каталитический дожигатель выхлопных газов».

В большинстве современных автомобилей система понижения токсичности выхлопа состоит из каталитического дожигателя выхлопных газов, и набора датчиков и приводов и компьютера, который отслеживает и регулирует происходящие процессы. Например, каталитический дожигатель использует катализатор и кислород для сжигания неотработанного топлива и некоторых других химических веществ, содержащихся в выхлопе. Датчик кислорода отвечает за количество кислорода в выхлопе, достаточное для работы катализатора, при необходимости датчик производит дополнительную регулировку.

Что еще помимо бензина питает Ваш автомобиль? Электросистема состоит из аккумулятора и генератора. Генератор соединяется с двигателем при помощи ремня и генерирует ток для зарядки аккумулятора. Аккумулятор подает 12 вольт на все системы, которым требуется электропитание (система зажигания, радио, фары, стеклоочистители, электрические стеклоподъёмники и сиденья с электрическим приводом регулировки, компьютеры и т.д.).

Теперь, когда Вы все узнали про подсистемы двигателя, мы расскажем о том, как увеличить мощность двигателя.

Увеличение мощности двигателя

Прочитав данную статью, Вы увидите, что существует множество способов увеличения показателей Вашего двигателя. Производители автомобилей постоянно экспериментируют со следующими параметрами для увеличения мощности двигателя или снижения расхода топлива.

Увеличение рабочего объема — Большой рабочий объем способствует увеличению мощности, т.к. при каждом обороте двигателя сгорает больше топлива. Увеличить рабочий объем можно, установив большие или дополнительные цилиндры. Практика показывает, что не имеет смысла устанавливать более 12 цилиндров.

Увеличение степени сжатия — Увеличение степени сжатия способствует увеличению мощности. Однако, чем сильнее происходит сжатие топливно-воздушной смеси, тем выше вероятность ее самовозгорания (еще до срабатывания свечи зажигания). Высокооктановый бензин предотвращает раннее сгорание топлива. Именно по этой причине мощные автомобили необходимо заправлять высокооктановым бензином — в их двигателях используется более высокая степень сжатия для увеличения мощности.
Увеличение объема подаваемой смеси — При увеличении подачи воздуха (и, соответственно, топлива), не изменяя размер цилиндра, можно увеличить мощность (точно также, как при увеличении размера цилиндра). Турбокомпрессоры и компрессоры наддува повышают давление поступающего воздуха, благодаря чему в цилиндр можно подать больше воздуха. Для получения более подробной информации читайте статью «Как работает турбокомпрессор».

Охлаждение поступающего воздуха — При сжатии воздуха, его температура повышается. Поэтому лучше обеспечивать подачу более холодного воздуха в цилиндр, т.к. чем выше температура воздуха, тем меньше его расширение при сгорании. По этой причине во многих двигателях с наддувом и турбонаддувом используются охладители воздуха. Охладитель воздуха — это специальный радиатор, по которому сжатый воздух проходит для охлаждения перед подачей в цилиндр. Для получения более подробной информации читайте статью «Как работает система охлаждения».

Облегчение подачи воздуха — При движении поршня вниз во время такта впуска, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух впускных клапанов на каждый цилиндр. В некоторых современных автомобилях используются полированные впускные коллекторы для снижения сопротивления воздуха. Установка больших воздушных фильтров также может улучшить подачу воздуха.

Облегчение выпуска выхлопа — При выпуске выхлопа из цилиндра, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух выпускных клапанов на каждый цилиндр (автомобиль с двумя впускными и двумя выпускными клапанами имеет по четыре клапана на каждый цилиндр, что увеличивает мощность двигателя — когда Вы слышите рекламу автомобиля, в которой говорится, что у него 4 цилиндра и 16 клапанов, это означает, что в двигателе установлено по четыре клапана на каждый цилиндр). Если выхлопная труба слишком узкая или сопротивление воздуха в глушителе слишком высокое, то это может создать противодавление, что также снизит мощность. В высокоэффективных выхлопных системах используются выпускные коллекторы, широкие выхлопные трубы и глушители для предотвращения образования противодавления в выхлопной системе. Поэтому, когда Вы слышите, что в автомобиле установлена «раздельная система выпуска», это значит, что для улучшения выпуска отработанных газов используется две выхлопных трубы вместо одной.

Снижение массы — Чем легче детали, тем эффективнее работает двигатель. Каждый раз, когда поршень меняет направления движения, он затрачивает энергию на то, чтобы прекратить движение в одну сторону и начать в другую. Чем легче поршень, тем меньше энергии ему требуется.

Впрыск топлива — Система впрыска топлива обеспечивает очень точное дозирование топлива для каждого цилиндра. Благодаря этому увеличивается мощность и снижается расход топлива. Для получения более подробной информации читайте статью «Как работает система впрыска топлива».

Часто задаваемые вопросы по двигателям

Ниже приведены наиболее часто задаваемые вопросы наших читателей, а также ответы на них:

  • Чем отличаются бензиновые и дизельные двигатели? В дизельных двигателях отсутствует свеча зажигания. Дизельное топливо подается в цилиндр, возгорание происходит под действием тепла и давления во время такта сжатия. Энергетическая плотность дизеля значительно выше, чем у бензина, поэтому дизельный двигатель рассчитан на больший пробег. Для получения более подробной информации читайте статью «Как работает дизельный двигатель».
  • Чем отличаются двухтактные и четырехтактные двигатели? В большинстве бензопил и лодочных моторов используются двухтактные двигатели. В двухтактном двигателе отсутствуют клапаны, а свеча зажигания дает искру каждый раз, когда поршень находится в верхней точке хода. Через отверстие в нижней части стенки цилиндра происходит впуск топлива и воздуха. Когда поршень движется вверх, сжимая смесь, свеча зажигания дает искру для начала процесса сгорания, отработанные газы выходят через другое отверстие в стенке цилиндра. В двухтактных двигателях необходимо смешивать масло с бензином, т.к. отверстия в стенках цилиндров не допускают использование уплотнительных колец для герметизации камеры сгорания. В общем, двухтактные двигатели являются достаточно мощными для своих размеров, т.к. в них на один поворот двигателя происходит в два раза больше циклов сгорания. Однако, двухтактный двигатель расходует больше бензина и сжигает большое количество масла, соответственно, он наносит больший вред экологии. Для получения более подробной информации читайте статью «Как работает двухтактный двигатель».
  • В этой статье Вы упоминали паровые двигатели — существуют ли какие-либо преимущества паровых двигателей или других двигателей внешнего сгорания? Единственное преимущество паровых двигателей заключается в том, что в качестве топлива можно использовать все, что горит. Например, в паровом двигателе в качестве топлива можно использовать уголь, газеты, дрова, в то время как для работы двигателя внутреннего сгорания требуется очищенное высококачественное жидкое или газообразное топливо. Для получения более подробной информации читайте статью «Как работает паровой двигатель».
  • Используются ли в автомобильных двигателях какие-либо другие циклы помимо цикла Отто? Как говорилось ранее, в двухтактных и дизельных двигателях используются другие циклы работы. В двигателе автомобиля Mazda Millenia используется модифицированный цикл Отто, который называется цикл Миллера. В газотурбинных двигателях используется цикл Брайтона. В дизельных ротационных двигателях Ванкеля используется цикл Отто, однако он происходит совершенно по-другому в отличие от четырехтактных поршневых двигателей.
  • Зачем нужно устанавливать восемь цилиндров? Почему нельзя установить один большой цилиндр с таким же рабочим объемом, как у восьми цилиндров? По ряду причин в 4.0л двигателе используется восемь цилиндров объемом пол-литра каждый, а не один большой 4-литровый цилиндр. Основная причина — это равномерность работы. V-образный восьмицилиндровый двигатель работает более равномерно, т.к. в нем происходит восемь взрывов с равными интервалами вместо одного сильного взрыва. Другая причина — это начальный крутящий момент. Когда Вы заводите V-образный восьмицилиндровый двигатель, Вам необходимы только два цилиндра (1л) во время их тактов сжатия, если использовать один большой цилиндр, то придется производить сжатие 4 литров.

Количество цилиндров в двигателе играет важную роль в его мощности. Каждый цилиндр имеет поршень, который движется внутри него, эти поршни соединены с коленвалом и вращают его. Чем больше используется поршней, тем больше происходит сгораний топлива в определенный момент времени. Это означает, что за меньшее время может быть выработано больше мощности.

4-цилиндровые двигатели обычно имеют «прямое» или «линейное» расположение цилиндров, в то время как в 6-цилиндровых двигателях используется более компактное V-образное расположение, поэтому они и называются V-образные 6-цилиндровые двигатели. Американские производители автомобилей остановили свой выбор на V-образных 6-цилиндровых двигателях, т.к. являются более мощными и тихими, оставаясь при этом достаточно легкими и компактными для установки в автомобили.

4-цилиндровый двигатель с линейным расположением цилиндров автомобиля Lotus Elise

Исторически сложилось так, что американские автовладельцы отвернулись от 4-цилиндровых двигателей, считая их медленными, слабыми, работающими неравномерно и дающими слабое ускорение. Однако, когда такие японские производители автомобилей, как Honda и Toyota стали устанавливать мощные 4-цилиндровые двигатели в 1980-х и 90-х, американцы по достоинству оценили эти компактные двигатели. Даже, несмотря на то, что такие японские автомобили, как Toyota Camry имели огромный успех по сравнению с аналогичными моделями американских производителей, в США продолжался выпуск автомобилей с 6-цилиндровыми двигателями, т.к. считалось, что американцам необходимы мощные автомобили. На сегодняшний день, в связи с ростом цен на бензин и обострившейся экологической ситуацией, Детройт переходит на 4-цилиндровые двигатели благодаря их низкому расходу топлива и меньшим выбросам в атмосферу.

3,8л V-образный 6-цилиндровый двигатель с турбонаддувом автомобиля Nissan GT-R.

Что касается будущего 6-цилиндровых двигателей, то за последние годы были максимально устранены различия между 4-цилиндровыми и 6-цилиндровыми двигателями. Для того, чтобы соответствовать требованиям низкого расхода бензина и уровня выхлопных газов, производители приложили много усилий по улучшению работы 6-цилиндровых двигателей. Большинство современных автомобилей с 6-цилиндровыми двигателями соответствуют стандартам расхода топлива уровня выхлопов, установленных для компактных 4-цилиндровых двигателей. Таким образом, различия в эффективности и мощности этих двух типов двигателей ослабевают, и принятие решения о покупке 4-цилиндрового или 6-цилиндрового двигателя сводится к их стоимости. Что касается моделей автомобильных, доступных с обоими типами двигателей, конфигурация с 4-цилиндровым двигателем стоит дешевле до $1000 по сравнению с 6-цилиндровым. Таким образом, независимо от мощности автомобиля, 4-цилиндровый двигатель поможет Вам сэкономить.

И, напоследок: Не стоит пытаться установить 6-цилиндровый двигатель на автомобиль, в котором изначально стоял 4-цилиндровый. Переоборудование автомобиля с 4-цилиндровым двигателем для установки 6-цилиндрового может обойтись Вам дороже, чем покупка нового автомобиля.

Что дают в двигателе 4 клапана на цилиндр?

Если исходить из целесообразности в том ее смысле, чтобы только обеспечить в двигателе нормальное протекание рабочего процесса, то вполне достаточно иметь два клапана на каждый цилиндр. Один обеспечивает поступление в цилиндр свежей горючей смеси (в дизелях — воздуха) , другой отвечает за удаление из цилиндров продуктов сгорания, то есть — отработанных газов.
В 1913 году компания Peugeot отправила за океан для участия в самой престижной в то время гонке в Индианаполисе ничем не примечательный внешне автомобиль. Секрет резвости Peugeot находился под его капотом, где был установлен силовой агрегат с четырьмя клапанами на цилиндр и двумя верхними распределительными валами. То, что многоклапанное газораспределение позволило заметно увеличить мощность двигателя, — это, так сказать, был побочный эффект. Чуть позднее Эрнест Анри — главный идейный вдохновитель создания систем, которые нынче называются DOHC или Twin Cam, подвел к делу и теоретическую базу. Использование двух впускных клапанов вместо одного почти в полтора раза увеличило площадь проходного сечения через клапаны, что обеспечивало в столько же раз лучшее наполнение цилиндров свежим зарядом горючей смеси. А чем выше степень наполнения, тем большую мощность отдает мотор. Два же выпускных клапана позволяют отработанным газам быстрее покинуть цилиндр и не препятствовать его наполнению опять-таки свежим зарядом.
Идеального числа клапанов не существует. В конце концов, все определяет диаметр цилиндров в двигателе, а также цели, которые преследуются конструкторами при разработке того или иного силового агрегата. Низкие затраты на изготовление, высокая надежность и простота обслуживания — от таких преимуществ двухклапанных моторов отказываться неразумно. В то же время увеличение числа клапанов на цилиндр свыше четырех уже не дает сколь-нибудь заметных результатов — лучшее наполнение компенсируется повышенными потерями на трение в клапанном механизме.

Чем больше клапанов приходится на каждый цилиндр, тем выше отдача двигателя. Мощность зависит от того, насколько быстро сгорает топливо в камере сгорания, а это, в свою очередь, зависит от скорости прохождения воздуха через двигатель. Воздух же поступает в мотор через «бутылочные горлышки» клапанов. Чем «шире» открываются клапаны (речь идет о произведении длины окружности на высоту подъема клапана) , тем лучше. Однако высота поднятия клапана небезгранична, так как может произойти контакт между клапаном и поршнем. Поэтому все определяет длина окружности отверстия клапана (не путать с площадью отверстия) .
Поупражняйтесь. Возьмите циркуль, лист бумаги и калькулятор. Элементарных навыков черчения и вычисления достаточно, чтобы понять, что чем больше маленьких кругов (клапанов) можно втиснуть в большой круг (цилиндр) , тем больше будет суммарная длина окружности седел клапанов. Но чтобы запихнуть в цилиндр больше клапанов, сами клапаны нужно делать меньше. Математические расчеты показывают, что наибольшего прироста суммарной длины окружности можно добиться при переходе от четного числа кругов к нечетному. Иначе говоря, если к двум клапанам добавить третий, выигрыш будет внушительным, а вот если к трем добавить четвертый, прирост окажется сравнительно небольшим. Пятый клапан опять даст существенный выигрыш в суммарной длине окружности. Втиснуть в окружность цилиндра больше пяти клапанов слишком сложно и поэтому непрактично.
У четырехклапанной схемы есть масса преимуществ. Свечу зажигания можно расположить строго по центру – в большинстве случаев такое положения является оптимальным. Впускные и выпускные клапаны можно скомпоновать параллельными парами в компактной шатровой камере сгорания, что обеспечивает эффективное сгорание рабочей смеси и снижает вредные выбросы. С пятью клапанами форма камеры сгорания неизбежно ухудшается, а соотношение площади ее поверхности к объему увеличивается, что приводит к снижению эффективности сгорания рабочей смеси.

Источник: Помимо этого, при использовании четырехклапанной схемы можно разместить впускные и выпускные клапаны V-образно, под небольшим углом друг к другу (порядка 20-25 градусов) . Это позволяет ограничиться одним верхним распредвалом, который приводит в действие клапаны посредством рокеров. Можно, наоборот, сделать угол между клапанами нарочито большим (45 градусов и более) . Тогда, используя куполообразные днища поршней, можно установить клапаны большего размера и добиться более «прямолинейного» впуска и выпуска газа, а значит, и более высокой мощности. Для такой компоновки потребуются два распредвала. Расположив четыре клапана V-образно, легче скомпоновать впускные и выпускные каналы на головке блока, а вот при пятиклапанной схеме сделать так, чтобы ничего друг другу не мешало, — целая проблема. А ведь еще нужно найти место для прохода охлаждающей жидкости. http://www.autogazeta.com/news.php?id=12275 и http://adt.by/print/gazeta/1003/

Остальные ответы

Суммарная площадь 4 х, вписанных в окружность цилиндра клапанов превышает максимальную площадь вписанных в ту же окружность 2 х клапанов. Это позволяет увеличить наполняемость цилиндра и скрость его продувки, а, следовательно и мощность, снимаемую с того же рабочего объема.

Ksenia PeerogМастер (1526) 9 лет назад

А кто сказал, что клапан должен быть обязательно круглым?
Можно сделать его полукруглым. И добиться 100% результата.
Для сравнения 2-х клапанный задействует 50% верхней площади цилиндра, 4-х клапанный 68%.

Георгиевич Мыслитель (6722) Теоретически форма клапана может быть любой, но на практике клапана круглые из-за технологических требований — притирка, обеспечение надёжного прилегания и «проворот» во время работы — опять таки для обеспечени герметичности.

Четыре в место двух , это в инжекторных двигателях, для лучшего проветривания камеры сгорания и выброса отработанных газов.

Дмитрий ГраниПрофи (644) 4 года назад
х там. в карбюраторных тоже 4 кл на ц

Двигатель работает в 4 этапа и только один из них (этапов) выполняет полезную работы. Если вместо одного двигателя взять 4 (то есть 4 цилиндра в одном двигателе) , то полезная работа будет совершаться в каждый момент времени.

DoniПрофи (505) 8 лет назад

Есть такая Категория вопросов — «Авто, мото» (см. список слева), там ЛЮБЯТ такие вопросы и там СПЕЦЫ, Вам точно ответят! Войдите ТУДА и задайте Ваш вопрос, не пожалеете! Получите ТОЧНЫЙ и КВАЛИФИЦИРОВАННЫЙ ответ.
Успехов Вам.

FOXXПросветленный (38863) 16 лет назад
ошибаетесь. вы же не бываете в той категории
Сигизмунд СигизмундовичПросветленный (24542) 16 лет назад

В автомото в основном сидят дети у которых любимая тема чем майбах лучше жигулей. На этот вопрос боюсь там никто бы не смог ответить.

Чем больше проходное сечение клапанов- тем лучше. А дальше чисто геометрия. 4 круга вписанных в окружность имеют большую суммарную площадь, чем два круга вписанных в ту же окружность.

Источник: кафедра ДВС ВНУ им.В. Даля.
Ksenia PeerogМастер (1526) 9 лет назад

А кто сказал, что клапан должен быть обязательно круглым?
Можно сделать его полукруглым. И добиться 100% результата.
Для сравнения 2-х клапанный задействует 50% верхней площади цилиндра, 4-х клапанный 68%.

кроме увеличения наполнения, мèньшие по размеры клапаны позволяют крутиться двигателю быстрее без риска зависания клапанов (когда инерция клапана превышает силу пружины, котора его возвращает назад) . И еще они меньше нагреваются. кстати 4 клапана- не предел. есть экземпляры с 5,6 и даже 8 на цилиндр.

Четыре клапана лучше

Многие характеристики двигателя зависят от качества наполнения цилиндров свежим зарядом. Чем больше воздуха попадает в цилиндры, тем большие крутящий момент и мощность выдает двигатель. Особенно это касается высоких оборотов, когда времени на впуск свежего заряда дается намного меньше. Основным ограничителем на пути подачи воздуха в цилиндры является малое проходное сечение клапанов. Для его увеличения есть три пути — сделать большим диаметр клапанов, установить на каждый цилиндр не по два, а по четыре, пять и даже шесть клапанов или оснастить системой наддува. Первый вариант оказался менее пригодным, так как размеры клапанов ограничивает диаметр цилиндра. Кроме того, на большие и соответственно тяжелые клапаны действуют большие силы инерции, требующие установки мощных пружин, усиления конструкции головки блока и увеличения массы. Несмотря на сложность конструкции, увеличение количества клапанов на цилиндр оказалось более эффективным, к тому же управление клапанами стало более гибким.

Что касается турбонаддува, который до 80-х годов был основным средством увеличения мощностных показателей двигателей, то, кроме усложнения конструкции, он был причиной недостатков: снижался ресурс двигателя, увеличивался расход топлива, повышалась стоимость обслуживания и ремонта двигателя. В 80-е годы, когда перед моторостроителями в очередной раз встала задача увеличить мощность малолитражных двигателей и снизить токсичность отработавших газов, многоклапанная конструкция ГРМ (DOHC-double overhead cam-shafts) оказалась наиболее подходящей. Поэтому автомобильные конструкторы позаимствовали ее из авиации и автоспорта. Двухклапанная схема ГРМ по показателям токсичности к этому времени уже исчерпала все свои возможности.

Во многих современных автомобилях четыре клапана на каждом цилиндре работают не постоянно. Например, на оборотах ниже средних открываются по одному впускному и выпускному клапану. Этого вполне достаточно, чтобы обеспечить хорошее наполнение цилиндров рабочей смесью. При увеличении оборотов выше средних к работе подключаются два других клапана, чем компенсируется нехватка воздуха, существующая у двухклапанных ГРМ. Таким образом обеспечивается подача в цилиндры горючей смеси с оптимальным соотношением «воздух-топливо», равным 14,7. Такая смесь наиболее хорошо сгорает — отдает максимум энергии и с минимальным выделением токсичных веществ в отработавших газах. Кроме того, на высоких оборотах в цилиндры удается подать больше смеси, чем обеспечивается увеличение максимальной мощности двигателя.

Те, кто имел возможность ездить на автомобилях с двух- и четырехклапанными моторами одного объема, могли, наверное, заметить, что некоторые «двухклапанники» намного динамичнее своих более совершенных конкурентов. Особенно это касается низких оборотов. Объясняется это тем, что при создании современных двигателей, имеющих по четыре (три, пять, шесть) клапана на цилиндр, основное внимание уделяется снижению токсичности отработавших газов и расхода топлива. Чтобы эти показатели снизить, «четырехклапанники» на оборотах ниже средних делают «зажатыми». Всю свою мощь они выдают на высоких оборотах, когда в работе участвуют все клапаны. Такой принцип построения работы двигателя выбран из-за того, что основную часть времени он работает на средних или ниже средних оборотах. Если же нужны большой крутящий момент и мощность, например, для резкого ускорения при обгоне или трогании, «раскручивайте» двигатель как можно больше.

При создании новых двигателей конструкторы ориентируются на экологические нормы будущего, т. е. те, которые вступят в силу через 5 — 10 лет. Вот почему уровень токсичности отработавших газов многих автомобильных новинок с двигателями DOHC намного ниже действующих в настоящий момент норм. Мы не употребляли термин «шестнадцатиклапанный», так как он предполагает только четырехцилиндровый двигатель, имеющий по четыре клапана на цилиндр. Но такое же количество клапанов могут иметь и шести-, восьмицилиндровые двигатели, кроме того, существуют моторы и с тремя, пятью и даже шестью клапанами на цилиндр.

Источник: нет источника

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите левый Ctrl+Enter.

Четырехтактный двигатель: Клапанный механизм

В принципе, все четырехтактные двигатели похожи, они отличаются только расположением и приводом впускных и выпускных клапанов. Как и многое другое в мотоцикле, стремление достичь высоких скоростей и мощностей привело к существенному усовершенствованию четырехтактного двигателя. Ниже рассмотрены различные схемы, начиная с нижнеклапанной, которая, несмотря не то, что во многом устарела, послужит для демонстрации степени развития современных конструкций с верхним распредвалом.

  • 1 Нижнеклапанный механизм газораспределения (SV)
  • 2 Верхнеклапанная конструкция. Механизм газораспределения (OHV)
  • 3 Конструкция механизма газораспределения с одним верхним распредвалом (SOHC)
  • 4 Конструкция механизма газораспределения с двумя верхними распредвалами (DOHC)
  • 5 Использование гидравлического привода в клапанном механизме
  • 6 Цепной привод газораспределительного механизма, натяжители
  • 7 Улучшенные конструкции четырехтактного двигателя
    • 7.1 Многоклапанные головки
    • 7.2 Десмодромный привод клапанов

    Нижнеклапанный механизм газораспределения (SV) [ ]

    SV schem

    Нижнеклапанный двигатель является относительно простой реализацией четырехтактного цикла, в нем используется минимум деталей для передачи усилия от распредвала к клапану. Привод распредвала осуществляется шестеренчатой или цепной передачей, расположенной рядом с коленчатым валом. Кулачки опираются на толкатели. которые представляют собой короткие штанги, перемещающиеся параллельно оси цилиндра. В этих штангах есть регулировочные винты с контргайками, при помощи которых можно изменять длину для обеспечения требуемого зазора в клапанах между толкателем и стержнем клапана. Такое расположение клапанов означает, что они находятся в выступе камеры сгорания сбоку от цилиндра, а не в головке, как в других четырехтактных двигателях.

    Скорее всего, нижнеклапанный двигатель — самый простой и дешевый из четырехтактных двигателей, и большинство английских и американских компаний широко использовали это в свое время, оснащая такими двигателями утилитарные или дешевые модели. Неудачная форма камеры сгорания, продиктованная расположением клапанов, которые находятся с одной стороны цилиндре, ограничивает КПД двигателя. В связи с этим нижнеклапанный двигатель развивает меньшую мощность и потребляет большее количество топлива по сравнению с аналогичным верхнеклапанным двигателем.

    Неэффективность стала более явной при росте частот вращения двигателя, и традиционный нижнеклапанный двигатель эволюционировал в одноцилиндровый двигатель большого объема с относительно низкой мощностью. При оснащении его большими маховиками он развивает высокий крутящий момент при низких частотах вращения двигателя, в связи с чем был популярен у приверженцев мотоциклов с колясками. Эти эластичные и простые двигатели были особенно надежны, кроме того, их было очень легко ремонтировать, если возникали какие-то проблемы.

    Упадок нижнеклапанных двигателей пришелся на годы после Второй Мировой войны, с появлением современных материалов и технологий производства. Наряду с более конкурентоспособной конструкцией OHV, нижнеклапанный двигатель исчез из мира мотоциклов, но по прежнему его можно встретить на газонокосилках и подобных машинах, где простота и дешевизна перевешивают любые другие факторы.

    Верхнеклапанная конструкция. Механизм газораспределения (OHV) [ ]

    OHV Scheme

    Строго говоря, термин «верхнеклапанный двигатель» охватывает все четырехтактные двигатели, конструкция механизма газораспределения которых отличается от нижнеклапанной. Однако обычно не применяется в отношении двигателей с верхним распределительным валом (SOHC и DОНС), а используется для обозначения верхнеклапанных двигателей с нижним распредвалом и толкателями.

    В верхнеклапанном двигателе применяются длинные штанги, проходящие через туннель в блоке и головке цилиндров, расположенный в приливе головки цилиндра невдалеке от стержней клапанов. Толкатели и торцы стержня клапана связаны короткими коромыслами, которые могут вращаться на оси. Регулировка зазора в клапанах производится при помощи как винта и контргайки на одном из плеч коромысла, так и толкателя телескопического типа, длину которого можно изменять. По конструкции верхнеклапанный двигатель очень близок к нижнеклапанному, хотя у первого множество преимуществ, главным из них является независимость при проектировании формы камеры сгорания. Во многих отношениях полусферическая камера сгорания является идеальной, и верхнеклапанная конструкция с расположением клапанов под углом к вертикали образует высокоэффективную форму камеры сгорания. Такое расположение клапанов способствует эффективному газообмену и более полному сгоранию топливовоздушной смеси. Эта основная компоновка двигателя OHV хорошо зарекомендовала себя за несколько десятилетий, но сегодня ее вытеснили верхневальные конструкции (за исключением нескольких моделей, которые все еще находятся в производстве).

    Стремление повысить мощность неизбежно привело к снижению ограничений по конструкции, сначала на спортивных, а позже и на дорожных мотоциклах. При заданной форме камеры сгорания один из способов достижения большей мощности двигателя заключается в повышении скорости его работы, то есть числа оборотов, и, следовательно, количества рабочих ходов в минуту. При повышении частоты вращения двигателя ряд технических ограничений начинает вызывать затруднения, особенно в узлах клапанного механизма. При работе двигателя на высоких частотах вращения прочность толкателей, штанг и коромысел должна быть достаточной для того, чтобы выдержать возросший уровень нагрузки, К сожалению, увеличение прочности неизменно приводит к росту веса, а это уже служит причиной других проблем.

    По мере того, как кулачок распредвала поднимает толкатель и штангу, открывая клапан через коромысло, скорость перемещения этих узлов постепенно увеличивается. До достижения определенной скорости проблем не возникает, но как только скорость превышает значение скорости, заданное конструктивными параметрами данного двигателя, вес узлов клапанного механизма становится таким, что они не могут достаточно быстро отслеживать профиль кулачка. В этот момент клапана начинают «зависать», несмотря на усилие возвратных пружин. Мало того, что это ограничивает частоту вращения двигателя, зависание клапанов приводит к риску изгиба или смещения штанг толкателей, а в отдельных случаях — риску выхода впускных и выпускных клапанов в камеру сгорания. Если это происходит, то в следующий момент, когда поршень достигает верхней мертвой точки, он ударяет по клапанам, что приводит к серьезным повреждениям. Одним из решений является установка усиленных клапанных пружин, но это вызывает усиление трения, снижение мощности и приводит к ускоренному износу. Кроме того, это может привести к вибрации (отскоку) клапана. Узлы клапанного механизма можно облегчить, но одновременно с этим происходит их ослабление. Альтернативой может быть использование специальных материалов для производства узлов, но, несмотря на то. что они будут легче и прочнее, их стоимость сильно возрастет.

    Из вышеописанного можно сделать вывод, что конструкция нижневального двигателя с толкателями (OHV) эффективна для многих целей, но там, где необходимо достижение высокой мощности и частоты вращения, она имеют ограниченное применение. Там, где применяется такая схема, например, на прочном и долговечном одноцилиндровом двигателе Honda CG125 или на V-образных двухцилиндровых двигателях Moco-Guzzi, получающаяся в результате машина — простая и надежная «рабочая лошадка*, хотя и не отличающаяся выдающимися характеристиками.

    Преимущество использования вышеописанной схемы на V-образном двигателе состоит в том, что используется только один распредвал — деталь, которую относят к числу дорогостоящих. Но поскольку большинство V-образных двухцилиндровых двигателей используется на мотоциклах типа «чёпер» и «турер», скромные характеристики не беда. Во многих отношениях нижневальный двигатель с толкателями (OHV) на данный момент равноценен исчезнувшим нижнеклапанным двигателям.

    Конструкция механизма газораспределения с одним верхним распредвалом (SOHC) [ ]

    Чтобы преодолеть затруднения, вызванные увеличением веса узлов клапанного механизма, желательно устранить как можно больше деталей, двигающихся возвратно-поступательно. К ним относятся: толкатель, штанга, коромысло и сам клапан. В отношении толкателя и клапана мало что может быть сделано, кроме понижения их веса за счет тщательного выбора оптимальной конструкции и использования прочных, долговечных, но легких материалов. На спортивных двигателях, где затраты на производство не имеют значения, могут использоваться экзотические материалы типа титана, но для массового производства это неприменимо.

    Единственное, что можно сделать, это перенести распредвал в головку цилиндров и избавиться от толкателя, а кулачки заставить работать непосредственно по закаленному подпятнику коромысла (рокера или рычага, как их иногда называют). Сама идея не нова, существует множество примеров довоенных четырехтактных двигателей с верхними распредвалами. В типичном двигателе с верхним распредвалом (SOHC) распредвал размещен в головке цилиндров между впускными и выпускными клапанами.

    SOHC

    На ранних спортивных двигателях привод распредвала осуществлялся коническими шестернями от вала, расположенного вертикально в блоке цилиндров. Стандартной схемой привода является цепная передача: зубчатое колесо, расположенное в середине или в конце коленчатого вала, огибает цепь механизма газораспределения, которая, в свою очередь, приводит в действие зубчатое колесо на распредвале. Кулачки распредвала воздействуют на короткие коромысла, которые, в свою очередь, управляют клапанами аналогично двигателю с механизмом газораспределения типа OHV. Единственными деталями, совершающими возвратно-поступательное движение остаются коромысла и клапана, так что конструкция все еще далека от совершенства, но уже намного лучше за счет отсутствия штанг и толкателей.

    Регулировка зазора в клапанах осуществляется при помощи винта и контргайки в одном из плеч коромысла. Большинство современных четырехтактных двигателей основываются на схеме газораспределения SOHC — это проясняет, почему они способны спокойно работать при частотах вращения, на которых нижневальный двигатель разлетелся бы на части.

    Конструкция механизма газораспределения с двумя верхними распредвалами (DOHC) [ ]

    Механизм газораспределения DOHC четырехтактного двигателя представляет собой усовершенствование схемы SOHC и предназначен для устранения единственной оставшейся возвратно-поступательно движущейся массы — коромысел (хотя при этом придется вернуть толкатели). Вместо единственного центрального распредвала используется пара, размешенная непосредственно над стержнями клапанов.

    DOHC

    Для привода газораспределительного механизма используется цепной привод — наиболее традиционный и дешевый в изготовлении, хотя известна (но пока широко не распространена) конструкция, следующая за тенденциями в автомобильной промышленности, в которой вместо цепной передачи используются шкив и зубчатый ремень. Среди преимуществ ременной передачи можно перечислить следующие: они менее шумные, не растягиваются, как цепи, а шкивы не изнашиваются подобно звездочкам, хотя замену ремня следует производить чаще. Другой способ привода распредвалов используется на моделях VFR фирмы Honda и представляет собой зубчатую передачу с приводом от коленчатого вала. При использовании такой конструкции отпадает потребность в натяжителе; схема также работает тише цепной, хотя шестерни зубчатой передачи подвержены износу.

    DOHC schaibi sverhu

    Толкатели распредвала, выполненные в форме «чаши», работают в расточках головки цилиндров. При использовании «чашеобразных» толкателей зазор в клапанах регулируется с помощью небольших круглых подкладок, называемых регулировочными шайбами. Поскольку сами шайбы выполняются нерегулируемыми, их необходимо заменять шайбами различной толщины до восстановления правильного зазора. На одних двигателях шайба практически совпадает с диаметром толкателя и устанавливается в гнездо, которое находится в верхней части толкателя; такую конструкцию называют «толкателем с регулировочными шайбами сверку». Шайбу можно заменить, удерживая толкатель в нижнем положении, при помощи специального приспособления так, чтобы образовался зазор между толкателем и распредвалом, достаточный для снятия и установки шайбы.

    На других двигателях шайба намного меньше и располагается под толкателем в центре держателя пружины клапана. При этом она опирается непосредственно на торец стержня клапана; такую конструкцию называют «толкателем с регулировочными шайбами снизу». Таким образом, масса деталей, перемещающихся возвратно-поступательно, при использовании небольших прокладок снижается еще сильнее, но появляется необходимость демонтажа распредвала при каждой процедуре регулировки зазора в клапанах, что повышает стоимость и трудоемкость обслуживания. Для того, чтобы избежать трудностей, связанных с необходимостью применения специальных приспособлений или демонтажа распредвала, на некоторых двигателях с газораспределительным механизмом DOHC вместо «чашеобразных толкателей» используют небольшие легкие коромысла, на некоторых двигателях с подобной схемой коромысла снабжены традиционным регулировочным винтом и контргайкой. На других коромысла опираются на небольшую шайбу, расположенную по центру держателя пружины клапана, а сами коромысла установлены на валах, длина которых превышает ширину коромысла. Для удержания коромысла над клапаном на валу расположена пружина. Для замены регулировочной шайбы коромысла сдвигаются в сторону пружины так, чтобы шайбу можно было вынуть.

    Схема DOHC допускает более высокие скорости вращения двигателя, чем SOHC, но даже в этом случае возможно зависание или вибрация клапанов при использовании широкой пружины. Чтобы избежать этого, на двигателях обычно используется две пружины вместо одной, при этом пружина меньшего диаметра устанавливается в пружину большего диаметра. Существуют два довода в пользу этого: во первых, малая пружина ускоряет закрытие клапанов, а во вторых, из-за различных резонансных частот пружин снижается вероятность вибрации. Также могут использоваться пружины переменной жесткости (витки пружины с одного конца располагаются ближе друг к другу, чем с другого), которые обеспечивают переменную резонансную частоту при использовании одной пружины. На данный момент широко используется комбинация двух этих идей — установка двух клапанных пружин с переменным шагом навивки для каждого клапана. Необходимо устанавливать пружины с переменным шагом так, чтобы конец пружины, где шаг витков меньше, опирался на головку цилиндра (для снижения возвратно-поступательно движущихся масс).

    При подведении итогов следует отметить, что в данный момент на мотоциклах верхневальные двигатели представляют собой наиболее распространенную конструкцию. Это ни в коем случае не говорит о том, что развитие прекратилось, хотя маловероятно, что в ближайшем будущем эта схема исчезнет. Дальнейшее совершенствование идет по пути улучшения существующей схемы за счет применения улучшенных технологий и современных материалов. Самая интересная разработка в области четырехтактных мотоциклетных двигателей — изменяемые фазы газораспределения, которая используется на данный момент в автомобильной промышленности, и ожидается ее появление на мотоциклах

    Использование гидравлического привода в клапанном механизме [ ]

    Иногда для устранения зазоре в клапанном механизме применяется гидропривод, таким образом, обеспечивается саморегулировка клапана («Zero-lash» (нулевой зазор)). Система гидропривода клапанов впервые была применена на мотоцикле Honda СВХ750 1980 года выпуска, сейчас компания Harley Davidson использует ее на всем модельном ряде своих двигателей.

    У данной системы есть два основных преимущества: автоматическая компенсация зазора в клапанном механизме, изменяющегося за счет теплового расширения и износа, а также снижение уровня шума. Кроме того, за счет поддержания нулевого зазора между узлами устраняются ударные нагрузки, снижаются износ и инерционность.

    Система обеспечивает поддержание нулевого зазора между кулачком и толкателем за счет давления масла, перемещающего телескопическую штангу. Двигатель, на котором компания Honda применила эту систему, снабжен механизмом газораспределения типа DOHC с коромыслами. Гидравлический толкатель служит опорой для коромысла и удерживает его в постоянном контакте с кулачками распредвала. Компания Harey Davidson расположила свой гидравлический толкатель между кулачком распредвала и штангой. Гидротолкатели фирмы Honda состоят из корпуса толкателя, плунжера (который устанавливается внутри корпуса), пружины, (размещающейся между плунжером и корпусом) и управляющего шарикового клапана. Полость плунжера выполняет роль резервуара для масла.

    По мере того, как распредвал вращается, и кулачки воздействуют на подпятник коромысла, плунжер перемещается в корпусе вниз и сжимает пружину. При этом давление масла в камера высокого давления повышается и заставляет шарик управляющего клапана опускаться на свое седло, размешанное в камере. При дальнейшем воздействии кулачка на коромысло давление в камере предотвращает любое взаимное перемещение толкателя и плунжера, следовательно,усилие передается к клапану, который при этом открывается. В момент соприкосновения вершины кулачка с коромыслом давление достигает своего максимального значения, крошечное количество масла выдавливается по зазору между плунжером и корпусом толкателя, которое не только смазывает их соприкасающиеся поверхности, но также частично способствует поглощению удара при максимальной высоте подъема клапана. Как только вершина кулачка минует коромысло, и клапана начнут закрываться, давление на плунжер снизится, что позволит освободиться пружине в корпусе толкателя. По мера того как это происходит, давление масла в камере понижается, открывая управляющий клапан и масло проникает из резервуара в камеру до ее полного наполнения. Плунжер поднимается, выбирая все зазоры между узлами механизма до достижения равновесия.

    Цепной привод газораспределительного механизма, натяжители [ ]

    Доводом в пользу применения цепного привода ГРМ, а не ремня или шестеренчатой передачи, может послужить низкая стоимость изготовления. Однако цепи вытягиваются по мере эксплуатации, и без устройства, поддерживающего необходимое натяжение, фазы газораспределения были бы неточными, и привод шумел бы при работе. В связи с этим все цепные приводы ГРМ оснащены натяжителем, воздействующим на провисающую ветвь цепи через «башмак». Кроме того, применяется направляющий башмак или успокоитель, располагающийся на натянутой ветви цепи, а на двигателях с газораспределительным механизмам DOHC устанавливается направляющая для верхней ветви цепи между звездочками распределительных валов. Определенное изначальное провисание цепи, заложенное в конструкцию цепного привода, полезно, поскольку оно намного облегчает процедуру демонтажа распредвала. Обычно периодически требуется вручную регулировать натяжитель для выбора всевозможного увеличения провисания. В настоящее время большинство натяжителей оснащены автоматической регулировкой с пружиной, воздействующей на плунжер храпового или винтового механизма.

    Для ременного привода также необходим натяжитель, но он используется для обеспечения заданного натяжения только при установке ремня или обслуживании привода.

    Улучшенные конструкции четырехтактного двигателя [ ]

    Многоклапанные головки [ ]

    Главная задача любого проектировщика двигателей заключается в повышении индикаторного КПД. Это означает увеличение мощности двигателя без увеличения его объема. Для этого необходимо, чтобы в камеру сгорания поступило большее количество топливовоздушной смеси: она должна сгореть наиболее эффективно, чтобы не пропал на один джоуль энергии топлива, и покинули цилиндр все отработавшие газы. Для достижения этого можно использовать карбюраторы с большим диаметром диффузора и снижать разрежение на впуске воздуха в двигатель, но только опредепенное количество смеси может пройти через клапан данного размера за данный промежуток времени. Так что очевидным решением является увеличение диаметра клапанов. Сложность заключается в том, что существует определенная площадь поверхности головки цилиндра, и дальнейшее увеличение клапанов ограничено этой площадью.

    Чтобы решить эту задачу, конструкторы использовали два впускных клапана меньшего диаметра вместо одного большого, создав при этом трехклапанную головку. Два таких клапана обладают общей площадью поверхности большей, чем один большой клапан, и, хотя один клапан в отдельности легче, общая дополнительная масса возвратно-поступательно движущихся частей не перевешивает выгоды, связанной с ростом КПД. Еще одно преимущество от использования большего числа клапанов: каждый из них в отдельности меньше и легче, и, следовательно, они могут работать при более высоких скоростях с меньшей склонностью к зависанию или вибрации. Эта система предлагала определенные улучшения, и производители решили попробовать добавить еще один выпускной клапан. Так на суд общества была представлена четырех-клапанная головка (стоит отметить, что впускные клапана обычно слегка больше выпускных). Для привода многоклапанного механизма на двигателях с ГРМ типа DOHC требуется единственное изменение: необходимо использовать вильчатое коромыспо, которое одновременно соприкасается с двумя клапанами, или увеличить число кулачков на распредвале вдвое. Но в многоклапанных головках не обязательно использовать схему DOHC, альтернативой такой схеме могут служить двигатели компании Honda с четырехклапанной головкой и схемой механизма газораспределения SOHC (с вильчатыми коромыслами), а также V — образный двухцилиндровый двигатель СХ500 с толкателями и вильчатыми коромыслами.

    Помимо очевидного преимущества — большей площади клапанов — многоклапаные головки привели к улучшению формы камеры сгорания и размещению свечи зажигания в наиболее предпочтительном месте — центре камеры, сгорания (в результате чего улучшается газообмен и сгорание становится более эффективным). Хорошим оригинальным примером такой камеры сгорания является запатентованная компанией Suzuki камера TSCC (двухвихревая камера сгорания). Классическая полусферическая форма камеры сгорания заменена камерой более плоской формы, а в области каждого седла клапана выполнена собственная миниатюрная полусфера. Поступающая в цилиндр смесь вовлекается в вихревое движение, способствующее и ускоряющее наполнение камеры сгорания. Для улучшения сгорания на многих двигателях применяют «сквэш-зону’ (squish-zone) по периметру камеры сгорания, которая, направляет смесь внутрь и вверх к свече зажигания по мере подъема поршня. Тогда при сгорании смеси пламя быстро распространяется, и энергия топлива выделяется наилучшим образом для получения максимальной мощности.

    Другое усовершенствование сделано в конструкции впускного тракта, который сужается по мере приближения к клапану. Это создает «эффект Вентури», благодаря которому коэффициент истечения увеличивается, в то время как канал, по которому смесь течет, сужается. Но это хорошо только тогда, когда форма клапана, который обтекает смесь, и форма камеры сгорания, куда она попадает, работают «в тесном сотрудничестве» для достижения полноценного эффекта.

    Yamaha утвердила концепцию, на один шаг опережающую развитие многоклапанных головок, использовав пятиклапанную головку на FZR и YZF750, а также и на V-образном двигателе Genes, объемом l000 кyб.см. с углом развала блоков 20 градусов. Благодаря использованию пяти клапанов (трех впускных и двух выпускных) достигается максимальное использование площади камеры сгорания, заданной ограничениями, связанными с круглой формой клапанов. В результате индикаторный КПД получается выше по сравнению с четырехклапанной головкой. Единственный недостаток этой конструкции заключается в увеличении стоимости производства головки цилиндра и механизма газораспределения.

    Использование многоклапанных головок тесно сопряжено с текущей тенденцией использования короткоходных двигателей с увеличенным диаметром цилиндра с целью достижения больших частот вращения двигателя. В короткоходном двигателе поршень должен пройти меньший путь до того, как он начнет свой следующий рабочий ход, а увеличение диаметра цилиндра приводит к увеличению камеры сгорания, в которой может разместиться больше клапанов. Рост диаметра цилиндра также приводит к увеличению поверхности днища поршня, то есть увеличивается площадь, на которую воздействует сгорающая топливовоздушная смесь.

    Десмодромный привод клапанов [ ]

    Возможно, внушительно названная десмодромная схема газораспределения — категорический ответ на сложности, связанные с вибрацией и зависанием клапанов. На всех традиционных четырехтактных двигателях клапан закрывается под воздействием одной или двух возвратных пружин. Можно изменить пружины для того, чтобы избежать вибрации или отскока клапана, а также проблемы зависания. Но любое изменение — только компромисс, обычно любые положительные эффекты всегда сопровождаются отрицательными.

    Десмодромный привод клапанов избегает этих проблем за счет использования дополнительного распредвала для привода дополнительных коромысел, которые принудительно закрывают клапана точно так же, как и открывают их. Клапан открывается за счет воздействия открывающего коромысла на стержень. По мере того, как кулачок проходит точку максимального подъема клапана, и коромысло начинает освобождать клапан, закрывающее коромысло заставляет клапан закрыться. На более поздних версиях системы используется один распредвал со всеми необходимыми кулачками.

    Практически десмодромный привод клапанов достаточно экзотичен и дорог для большинства серийно производимых мотоциклов. Он используется только компанией Ducati и приводит к хорошему эффекту, особенно в случае применения его на спортивных двигателях. Можно поспорить, нужен ли он на дорожных машинах — особенно с двигателями большого объема, максимальная частота вращения которых ограничена из других соображений. Что не является поводом для спора, так это эффективность, с которой десмодромный привод устраняет проблемы зависания и вибрации клапанов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *